Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@nlpjs/lang-id

Package Overview
Dependencies
Maintainers
2
Versions
38
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@nlpjs/lang-id

Core

  • 4.26.1
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
2
Created
Source

NLPjs logo

@nlpjs/lang-id

Coverage Status NPM version NPM downloads

TABLE OF CONTENTS

Installation

You can install @nlpjs/lang-id:

    npm install @nlpjs/lang-id

Normalization

Normalization of a text converts it to lowercase and remove decorations of characters.

const { NormalizerId } = require('@nlpjs/lang-id');

const normalizer = new NormalizerId();
const input = 'apa yang dikembangkan perúsahaan Anda';
const result = normalizer.normalize(input);
console.log(result);
// output: apa yang dikembangkan perusahaan anda

Tokenization

Tokenization splits a sentence into words.

const { TokenizerId } = require('@nlpjs/lang-id');

const tokenizer = new TokenizerId();
const input = 'apa yang dikembangkan perusahaan Anda';
const result = tokenizer.tokenize(input);
console.log(result);
// output: [ 'apa', 'yang', 'dikembangkan', 'perusahaan', 'Anda' ]

Tokenizer can also normalize the sentence before tokenizing, to do that provide a true as second argument to the method tokenize

const { TokenizerId } = require('@nlpjs/lang-id');

const tokenizer = new TokenizerId();
const input = 'apa yang dikembangkan perusahaan Anda';
const result = tokenizer.tokenize(input, true);
console.log(result);
// output: [ 'apa', 'yang', 'dikembangkan', 'perusahaan', 'anda' ]

Identify if a word is an indonesian stopword

Using the class StopwordsId you can identify if a word is an stopword:

const { StopwordsId } = require('@nlpjs/lang-id');

const stopwords = new StopwordsId();
console.log(stopwords.isStopword('apa'));
// output: true
console.log(stopwords.isStopword('perusahaan'));
// output: false

Remove stopwords from an array of words

Using the class StopwordsId you can remove stopwords form an array of words:

const { StopwordsId } = require('@nlpjs/lang-id');

const stopwords = new StopwordsId();
console.log(
  stopwords.removeStopwords([
    'apa',
    'yang',
    'dikembangkan',
    'perusahaan',
    'anda',
  ])
);
// output: [ 'dikembangkan', 'perusahaan' ]

Change the stopwords dictionary

Using the class StopwordsId you can restart it dictionary and build it from another set of words:

const { StopwordsId } = require('@nlpjs/lang-id');

const stopwords = new StopwordsId();
stopwords.dictionary = {};
stopwords.build(['apa', 'anda']);
console.log(
  stopwords.removeStopwords([
    'apa',
    'yang',
    'dikembangkan',
    'perusahaan',
    'anda',
  ])
);
// output: [ 'yang', 'dikembangkan', 'perusahaan' ]

Stemming word by word

An stemmer is an algorithm to calculate the stem (root) of a word, removing affixes.

You can stem one word using method stemWord:

const { StemmerId } = require('@nlpjs/lang-id');

const stemmer = new StemmerId();
const input = 'dikembangkan';
console.log(stemmer.stemWord(input));
// output: kembang

Stemming an array of words

You can stem an array of words using method stem:

const { StemmerId } = require('@nlpjs/lang-id');

const stemmer = new StemmerId();
const input = ['apa', 'yang', 'dikembangkan', 'perusahaan', 'Anda'];
console.log(stemmer.stem(input));
// outuput: [ 'apa', 'yang', 'kembang', 'usaha', 'Anda' ]

Normalizing, Tokenizing and Stemming a sentence

As you can see, stemmer does not do internal normalization, so words with uppercases will remain uppercased. Also, stemmer works with lowercased affixes, so perusahaan will be stemmed as usaha but PERUSAHAAN will not be changed.

You can tokenize and stem a sentence, including normalization, with the method tokenizeAndStem:

const { StemmerId } = require('@nlpjs/lang-id');

const stemmer = new StemmerId();
const input = 'apa yang dikembangkan PERUSAHAAN Anda';
console.log(stemmer.tokenizeAndStem(input));
// output: [ 'apa', 'yang', 'kembang', 'usaha', 'anda' ]

Remove stopwords when stemming a sentence

When calling tokenizeAndStem method from the class StemmerId, the second parameter is a boolean to set if the stemmer must keep the stopwords (true) or remove them (false). Before using it, the stopwords instance must be set into the stemmer:

const { StemmerId, StopwordsId } = require('@nlpjs/lang-id');

const stemmer = new StemmerId();
stemmer.stopwords = new StopwordsId();
const input = 'apa yang dikembangkan perusahaan Anda';
console.log(stemmer.tokenizeAndStem(input, false));
// output: [ 'kembang', 'usaha' ]

Sentiment Analysis

To use sentiment analysis you'll need to create a new Container and use the plugin LangId, because internally the SentimentAnalyzer class try to retrieve the normalizer, tokenizer, stemmmer and sentiment dictionaries from the container.

const { Container } = require('@nlpjs/core');
const { SentimentAnalyzer } = require('@nlpjs/sentiment');
const { LangId } = require('@nlpjs/lang-id');

(async () => {
  const container = new Container();
  container.use(LangId);
  const sentiment = new SentimentAnalyzer({ container });
  const result = await sentiment.process({
    locale: 'id',
    text: 'kucing itu mengagumkan',
  });
  console.log(result.sentiment);
})();
// output:
// {
//   score: 4,
//   numWords: 3,
//   numHits: 1,
//   average: 1.3333333333333333,
//   type: 'afinn',
//   locale: 'id',
//   vote: 'positive'
// }

The output of the sentiment analysis includes:

  • score: final score of the sentence.
  • numWords: total words of the sentence.
  • numHits: total words of the sentence identified as having a sentiment score.
  • average: score divided by numWords
  • type: type of dictionary used, values can be afinn, senticon or pattern.
  • locale: locale of the sentence
  • vote: positive if score greater than 0, negative if score lower than 0, neutral if score equals 0.

Contributing

You can read the guide of how to contribute at Contributing.

Contributors

Contributors

Made with contributors-img.

Code of Conduct

You can read the Code of Conduct at Code of Conduct.

Who is behind it?

This project is developed by AXA Group Operations Spain S.A.

If you need to contact us, you can do it at the email opensource@axa.com

License

Copyright (c) AXA Group Operations Spain S.A.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

FAQs

Package last updated on 12 Jan 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc